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Abstract

This study investigates acoustic radiation of rectangular Mindlin plates in different combinations of classical boundary

conditions. A set of exact close-form sound pressure equations are given for the first time using the so-called Mindlin plate

theory (a first-order shear deformation theory) for the plates having two opposite edges that are simply supported. The

other two edges may be given any possible combination of free, simply-supported and clamped boundary conditions. It is

assumed that no fluid loading occurs on the plate structure. In order to study the transverse vibration of moderately thick

rectangular plates, the dimensionless equations of motion are derived based on the Mindlin plate theory.

Structural–acoustic coupling is implemented for vibrating plate models. The radiation field of a vibrating plate with a

specified distribution of velocity on the surface can be computed using the Rayleigh integral approach. The acoustic

pressure distribution of the radiator is analytically obtained in its far field. To reveal the excellent accuracy of our exact

acoustical solution, a comparison is first made with the existing data. Additionally, a few 3-D plots of the directivity

pattern and their corresponding contour plots are illustrated for moderately thick rectangular plates with different

boundary conditions. Finally, the influence of six possible combinations of boundary conditions, aspect ratios and

thickness to length ratios on the sound pressure, frequency and critical distance parameters are examined and discussed in

detail.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Rectangular plates are important structural elements. They are used in a wide range of applications in many
branches of modern technology, namely mechanical, aerospace, electronic, marine, optical, nuclear and
structural engineering. The typical thickness of practical components is often beyond the thin plate theory
limit and this may have a considerable effect on sound radiation. Although there is a substantial body of
literature on the structural dynamics of thin and thick plates [1–5], acoustic radiation from thick plates has not
been adequately examined.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. Six combinations of classical boundary conditions at the edges of rectangular Mindlin plates.
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Early research efforts to calculate the radiated sound field for a flat plate in an infinite baffle dates back to
the work of Rayleigh [6]. Lomas and Hayek [7] developed the Green function solution for the steady-state
vibrations of an elastically supported rectangular plate coupled to a semi-infinite acoustic medium. Cremer
and Heckl [8] analyzed sound radiation of a planar source using a Fourier transformation approach in
K-space (wavenumber space). Williams [9] proposed a series expansion in ascending power of the wavenumber
K for the acoustic power radiated from a planar source.

Sound radiation from thin circular and annular disks was examined by Lee and Singh [10]. They focused on
either flexural vibration modes or rigid body piston motions. Tao et al. [11] presented the mathematical
expression for sound radiation from a thin infinite isotropic plate coupled with light and heavy fluids and
subjected to multipoint excitation. Recently, Lin [12,13] studied the acoustic field of circular and rectangular
radiators in flexural vibration. The radiator was considered to be a rectangular thin plate in flexural vibration
with simply supported boundary conditions [13]. The acoustic pressure distribution of the radiator in a far
field was analytically obtained and its near field was numerically computed. Zhou et al. [14] calculated the
sound pressure at the far field from a thin infinite plate in contact with a layered inhomogeneous fluid
subjected to single point excitation. Musha [15] presented a new numerical calculation method based on the
Rayleigh integral to obtain the instantaneous radiation pattern by using the harmonic wavelet transformation
for a rectangular vibrating plate. More recently, Lee and Singh [16] presented two analytical solutions for the
far-field modal sound pressure radiation from the radial structural modes of a thick annular disk with
completely free boundary conditions.

The exact analysis of sound radiation of thin rectangular plates having four simply supported edges can be
found in Lin’s work [13]. Such equations for moderately thick plates are not available in the literature. In
order to fill this apparent void, the present work is carried out by providing the exact acoustical analysis
for six cases of a rectangular plate having two opposite sides simply supported. The six cases considered
in this study include S–S–S–S, S–C–S–S, S–C–S–C, S–S–S–F, S–F–S–F and S–C–S–F rectangular Mindlin
plates, as shown in Fig. 1. The integrated equations of motion in terms of the resultant stresses are derived
based on Mindlin plate theory for moderately thick rectangular plates. This is done by considering transverse
shear deformation and rotary inertia [17]. The exact transverse deflection and the exact displacements
along X1- and X2-axes are derived for the first time. The acoustic pressure distribution of the radiator in
its far field is analytically obtained using a Rayleigh integral approach. After performing a comparison study,
it is proven that the Mindlin plate theory and its results may be considered for thin plates. Some numerical
results are presented for the acoustic pressure of the plate in the far field as mode shapes. The influence
of six possible combinations of boundary conditions, aspect ratios and thickness to length ratios on the
sound pressure, frequency and critical distance parameters is graphically investigated. In the future, these
results may serve as benchmark solutions for validating approximate 2-D theories and new computational
techniques.

2. Equations of vibratory motion of moderately thick plates

Consider a flat, isotropic, rectangular Mindlin plate of uniform thickness h, length a, width b and Poisson’s
ratio v described in the Cartesian coordinate system ðx1;x2;x3Þ, as depicted in Fig. 2(a). The Cartesian
coordinates system ðX 1;X 2;X 3Þ in Fig. 2(b) is a dimensionless coordinate system, where X 1 ¼ x1=a, X 2 ¼

x2=b and X 3 ¼ x3.
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Fig. 2. A rectangular Mindlin plate with coordinate convention: (a) dimensional coordinate system and (b) non-dimensional coordinate

system.
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Based on dimensionless parameters, the transverse deflection for each of the six considered cases can be
obtained by following the research work of Hosseini-Hashemi and Arsanjani [17]. In particular, for S–S–S–S
cases, it can be calculated as

Ũ3 ¼ A1 sinðl1ðX 2 þ 1=2ÞÞ sinðmðX 1 þ 1=2ÞÞ, (1)

where Ũ 3 ¼ U3=a is the dimensionless transverse deflection of the plate, m ¼ mp ðm ¼ 1; 2; . . .Þ, A1 is the
arbitrary constant (see Appendix A for more details) and l1 is a constant depending on geometry parameters
and material properties of the plate.

Hereafter, some constant parameters, including l2, l3, C1, C2 and Li ði ¼ 1; 2; 3 and 4Þ, are employed to
extract transverse deflection of the plate. These constants are dependent on the geometry parameters and
material properties of the plate.

For the case of S–C–S–S:

Ũ 3 ¼ A1 sinðl1ðX 2 þ 1=2ÞÞ �
sinðl1Þ
sinhðl2Þ

sinhðl2ðX 2 þ 1=2ÞÞ

� �
sinðmðX 1 þ 1=2ÞÞ. (2)

For the case of S–C–S–C:

Ũ 3 ¼ A1 sinðl1ðX 2 þ 1=2ÞÞ þ b1 cosðl1ðX 2 þ 1=2ÞÞ � ðb1 cosðl1Þ � b1 coshðl2Þ
�
þ sinðl1ÞÞ

sinhðl2ðX 2 þ 1=2ÞÞ

sinhðl2Þ
� b1 coshðl2ðX 2 þ 1=2ÞÞ

�
sinðmðX 1 þ 1=2ÞÞ, (3)

where

b1 ¼ �
Z2l3ðC2l2 sinðl1Þ � C1l1 sinhðl2ÞÞ sinhðl3Þ þ ðC1 � C2Þm2 sinðl1Þ sinhðl2Þ

C2Z2l2l3ðcosðl1Þ � coshðl2ÞÞ sinhðl3Þ þ ðC1 � C2Þm2ðcosðl1Þ � coshðl3ÞÞ sinhðl2Þ
(4)

and Z ¼ a=b is the aspect ratio.
For the case of S–S–S–F:

Ũ 3 ¼ A1 ½sinðl1ðX 2 þ 1=2ÞÞ þ b2 cosðl1ðX 2 þ 1=2ÞÞ� coshðl2Þ þ
L1l1
L3l2

sinh½l2ð1=2� X 2Þ�

�

� ðb2 cosðl1Þ þ sinðl1ÞÞ coshðl2ðX 2 þ 1=2ÞÞ

�
sinðmðX 1 þ 1=2ÞÞ

coshðl2Þ
, (5)

where

b2 ¼ �
R1

R2
, (6)

R1 ¼ C2L2ðL3l2 sinðl1Þ � L1l1 sinhðl2ÞÞ coshðl3Þ

þ ðC1 � C2Þl2m2ð1� nÞðL3 sinðl1Þ þ 2Z2l1l3 sinhðl3ÞÞ coshðl2Þ, (7)

R2 ¼ L3l2fC2L2 cosðl1Þ coshðl3Þ þ ½ðC1 � C2Þm2ð1� nÞ cosðl1Þ þ C1L4 coshðl3Þ� coshðl2Þg. (8)
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For the case of S–F–S–F:

Ũ 3 ¼ A1 sinðl1ðX 2 þ 1=2ÞÞ þ b3 cosðl1ðX 2 þ 1=2ÞÞ �
L1l1
L3l2

sinhðl2ðX 2 þ 1=2ÞÞ

�

þb4 coshðl2ðX 2 þ 1=2ÞÞ

�
sinðmðX 1 þ 1=2ÞÞ, (9)

where

b3 ¼ �
R3

R4
; b4 ¼

R5

R6
, (10)

R3 ¼ 2ðC1 � C2ÞZ2m2l1l2l3ð1� nÞðcosðl1Þ � coshðl3ÞÞ sinhðl2Þ

� C2L1L2l1ðcosðl1Þ � coshðl2ÞÞ sinhðl3Þ, (11)

R4 ¼ C2L1L2l1 sinðl1Þ sinhðl3Þ � l2½2ðC1 � C2ÞZ2m2l1l3ð1� nÞ sinðl1Þ

þ C1L3L4 sinhðl3Þ� sinhðl2Þ, (12)

R5 ¼ Z2l1l3ð1� nÞ½ðC2 � 1ÞL1ðcoshðl2Þ � coshðl3ÞÞ

þ ðC1 � 1ÞL3ðb3 sinðl1Þ � cosðl1Þ þ coshðl3ÞÞ� � b3C1L3L4 sinhðl3Þ, (13)

R6 ¼ L3½ðC2 � 1ÞZ2l2l3ð1� nÞ sinhðl2Þ � C2L2 sinhðl3Þ�. (14)

For the case of S–C–S–F:

Ũ 3 ¼ A1 ½sinðl1ðX 2 þ 1=2ÞÞ þ b5 cosðl1ðX 2 þ 1=2ÞÞ� coshðl2Þ þ
L1l1
L3l2

sinh½l2ð1=2� X 2Þ�

�

�ðb5 cosðl1Þ þ sinðl1ÞÞ coshðl2ðX 2 þ 1=2ÞÞ

�
sinðmðX 1 þ 1=2ÞÞ

coshðl2Þ
, (15)

where

b5 ¼ �
R7

R8
, (16)

R7 ¼ C2L2ðL3l2 sinðl1Þ � L1l1 sinhðl2ÞÞ coshðl3Þ

þ ðC1 � C2Þm2l2ð1� nÞðL3 sinðl1Þ þ 2Z2l1l3 sinhðl3ÞÞ coshðl2Þ, (17)

R8 ¼ L3l2½ðC1 � C2Þm2ð1� nÞ cosðl1Þ coshðl2Þ

þ ðC2L2 cosðl1Þ þ C1L4 coshðl2ÞÞ coshðl3Þ�, (18)

where

C1 ¼ 1�
a22
n1a23

; C2 ¼ 1�
a21
n1a23

,

a21 and a22 ¼
b2

2

d2

12

1

k2n1
þ 1

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

12

� �2
1

k2n1
� 1

� �2

þ
4

b2

vuut
2
64

3
75,

a23 ¼
12k2

b2d2
a21a

2
2 ¼

12k2

d2
b2d4

144k2n1
� 1

� �
(19)

and b ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
is the dimensionless frequency parameter, o and r are the circular natural frequency and

the mass density, respectively, D ¼ Eh3=ð12ð1� n2ÞÞ is the flexural rigidity, k and E are the shear correction
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factor and the modulus of elasticity, respectively, d ¼ h=a is the thickness to length ratio and n1 ¼ ð1� nÞ=2. It
is also possible to define

L1 ¼ ðC1 � 1ÞZ2l23 � ðC1 þ 1Þm2; L2 ¼ Z2l22 � nm2,

L3 ¼ ðC2 � 1ÞZ2l23 � ðC2 þ 1Þm2; L4 ¼ Z2l21 þ nm2, (20)

where l1, l2 and l3 are related to a1, a2 and a3, respectively, by

l1 ¼
1

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � m2

q
; l2 ¼

1

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a22 þ m2

q
; l3 ¼

1

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a23 þ m2

q
. (21)

Coefficients l1, l2 and l3 can also be expressed as

l21 ¼
�lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 4a

p
2

; l22 ¼
lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 4a

p
2

; l3 ¼
1

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � k2b2=yþ y=n1

q
, (22)

where

l ¼
a1m2 þ a2m2 � a3 � a5

a2Z2
; a ¼

a1m4 � ða3 þ a4Þm2 þ a6

a2Z4
, (23)

ai ði ¼ 1; 2; . . . ; 6Þ are constants defined as

a1 ¼ a2 ¼ 1; a3 ¼
1

y
ðb2Þ; a4 ¼ a5 ¼

b2k2u1
y

; a6 ¼
b2k2u1
y2
� 1

� �
b2 (24)

and

y ¼ 12
k2n1
d2

. (25)

3. Equations of acoustical radiation field of moderately thick plates

Assuming free harmonic motion, the velocity distribution on the surface of the plate may be written as

Ṽ ðX 1;X 2; t̃Þ ¼ jbŨ3ðX 1;X 2Þe
jbt̃, (26)

where t̃ ¼ ðt
ffiffiffiffiffiffiffiffiffiffiffiffi
D=rh

p
Þ=a2 is the dimensionless time, t is the time and j ¼

ffiffiffiffiffiffiffi
�1
p

. Here we assume that the
rectangular moderately thick plate radiator in flexural vibration is mounted on a flat rigid baffle of infinite
extent. The coordinates shown in Fig. 3 are positioned in the mid-plane surface of the plate. The acoustic
pressure at the field point P0ðX 1p;X 2p;X 3pÞ can be obtained by dividing the radiating surface of the flexural
Fig. 3. A rectangular plate and its field point in the spherical coordinate system.
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plate into infinitesimal elements ðds ¼ dX 1 dX 2Þ, where each element acts as a simple baffled source of strength
having midpoint coordinates ðX 1s;X 2sÞ.

The distance between the midpoint of the infinitesimal elements (ds) and the observation point (P0) may be
given by

H̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX 1p � X 1sÞ

2
þ ðX 2p � X 2sÞ

2
þ X 2

3p

q
. (27)

The position of the observation point can also be expressed in its spherical coordinates

X 1p ¼ r̃ sinðcÞ cosðfÞ; X 2p ¼ r̃ sinðcÞ sinðfÞ; X 3p ¼ r̃ cosðcÞ, (28)

where r̃ is the distance between the center of the spherical coordinates and the observation point

r̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

1p þ X 2
2p þ X 2

3p

q
. (29)

Based on the theory of a Rayleigh integral [18], the total dimensionless acoustic pressure is

P̃ ¼ �
K̃r̃0C̃0b

2p

Z Z
Ũ3

H̃
ejðbt̃�K̃H̃Þ dX 1 dX 2, (30)

where P̃ ¼ Pa2Zh=D, K̃ ¼ b=C̃0, r̃0 ¼ r0=r, r0, C̃0 ¼ C0a
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
and C0 are the dimensionless sound pressure,

wavenumber, dimensionless density, density of the medium, dimensionless speed of sound in medium and
speed of sound in medium, respectively.

The critical distance D̃c between the near and the far fields for a rectangular plate radiator as given by
Kirkup [18] may be approximated as

D̃cX1=l̃, (31)

where l̃ ¼ C̃0=f̃ is the dimensionless wavelength and f̃ ¼ b=2p is the dimensionless frequency of the radiated
sound that is also equal to the resonance frequency of the rectangular plate in the flexural vibration. Using the
far-field approximation, the distance H̃ in the acoustic pressure amplitude can be approximated as r̃. The effect
of distance on the phase of the acoustic pressure can be approximately expressed as

H̃ ¼ r̃ � sinðcÞ cosðfÞX 1 � sinðcÞ sinðfÞ X 2. (32)

Then, Eq. (30) for far acoustic fields leads to

P̃ ¼ �
K̃r̃0C̃0b
2pr̃

e jðbt̃�K̃r̃Þ
Z 0:5

�0:5

Z 0:5

�0:5
Ũ 3e

jK̃ðsinðcÞ cosðfÞX 1þsinðcÞ sinðfÞX 2Þ dX 1 dX 2. (33)

Substituting the expression of the transverse displacement distribution into Eq. (33) and separating terms of
X1 and X2 variables, we have

P̃ ¼ �
K̃r̃0C̃0b
2pr̃

e jðbt̃�K̃r̃ÞA1

Z 0:5

�0:5
PðX 1ÞdX 1

Z 0:5

�0:5
PðX 1ÞdX 2. (34)

Starting from Eq. (34), it is possible to calculate P̃ for the six considered cases of different boundary
conditions.

In particular, for the case of S–S–S–S

PðX 1Þ ¼ sinðmðX 1 þ 0:5ÞÞejK̃ðsinðcÞ cosðfÞX 1Þ,

PðX 2Þ ¼ sinðl1ðX 2 þ 0:5ÞÞejK̃ðsinðcÞ sinðfÞX 2Þ (35)

and finally

P1ðc;fÞ ¼
Z 0:5

�0:5
PðX 1ÞdX 1 ¼

mpðð�1ÞmExp½jK̃ cosðg1Þ� � 1Þ

ðK̃ cosðg1ÞÞ
2
� ðmpÞ2

Exp½�jK̃ cosðg1Þ=2�,
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P2ðc;fÞ ¼
Z 0:5

�0:5
PðX 2ÞdX 2 ¼ Z1Exp½�jK̃ cosðg2Þ=2�, (36)

where

Z1 ¼
�l1 þ Exp½jK̃ cosðg2Þ�fl1 cosðl1Þ � jK̃ cosðg2Þ sinðl1Þg

ðK̃ cosðg2ÞÞ
2
� ðl1Þ

2
, (37)

cosðg1Þ ¼ sinðcÞ cosðfÞ; cosðg2Þ ¼ sinðcÞ sinðfÞ. (38)

Due to the mathematical similarity of the other five cases, P1ðc;fÞ can be obtained using Eq. (36); however,
P2ðc;fÞ must be recalculated for each type of boundary condition.

For the case of S–C–S–S:

P2ðc;fÞ ¼ Z1 �
sinðl1Þ
sinhðl2Þ

Z2

� �
Exp½�jK̃ cosðg2Þ=2�, (39)

where

Z2 ¼
�l2 þ Exp½jK̃ cosðg2Þ�fl2 coshðl2Þ � jK̃ cosðg2Þ sinhðl2Þg

ðK̃ cosðg2ÞÞ
2
þ ðl2Þ

2
. (40)

For the case of S–C–S–C:

P2ðc;fÞ ¼ Z1 þ b1Z3 �
ðb1 cosðl1Þ � b1 coshðl2Þ þ sinðl1ÞÞ

sinhðl2Þ
Z2 � b1Z4

� �
Exp½�jK̃ cosðg2Þ=2�, (41)

where

Z3 ¼
K̃ cosðg2Þ þ Exp½jK̃ cosðg2Þ�f�K̃ cosðg2Þ cosðl1Þ þ jl1 sinðl1Þg

ðK̃ cosðg2ÞÞ
2
� ðl1Þ

2
, (42)

Z4 ¼
jK̃ cosðg2Þ þ Exp½jK̃ cosðg2Þ�fl2 sinhðl2Þ � jK̃ cosðg2Þ coshðl2Þg

ðK̃ cosðg2ÞÞ
2
þ ðl2Þ

2
. (43)

For the case of S–S–S–F:

P2ðc;fÞ ¼ Z1 þ b2Z3 þ
L1l1

L3l2 coshðl2Þ
Z5 �

ðb2Cosðl1Þ þ sinðl1ÞÞ
coshðl2Þ

Z4

� �
½�jK̃ cosðg2Þ=2�, (44)

where

Z5 ¼
l2ð�Exp½jK̃ cosðg2Þ� þ coshðl2ÞÞ þ jK̃ cosðg2Þ sinhðl2Þ

ðK̃ cosðg2ÞÞ
2
þ ðl2Þ

2
. (45)

For the case of S–F–S–F:

P2ðc;fÞ ¼ Z1 þ b3Z3 �
L1l1
L3l2

Z2 þ b4Z4

� �
Exp½�jK̃ cosðg2Þ=2�. (46)

For the case of S–C–S–F:

P2ðc;fÞ ¼ Z1 þ b5Z3 þ
L1l1

L3l2 coshðl2Þ
Z5 �

b5 cosðl1Þ þ sinðl1Þ
coshðl2Þ

Z4

� �
Exp½�jK̃ cosðg2Þ=2�. (47)

Therefore, the radiation acoustic pressure of the moderately thick rectangular plate radiator in the flexural
vibration in the far field can be obtained as

P̃ ¼ �
K̃r̃0C̃0b
2pr̃

ejðbt̃�K̃r̃ÞA1P1ðc;fÞP2ðc;fÞ. (48)

It is seen that the far-field radiation acoustic field of the rectangular Mindlin plate in flexural vibration
depends on both the distance and direction. This means that the radiation acoustic field is directional. From
Eq. (48), the directivity pattern function can be obtained as

DP ¼ P1ðc;fÞP2ðc;fÞ. (49)
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From Eq. (48), it can be seen that the acoustic pressure distribution depends on the geometrical dimensions,
the vibrational order of the plate and the frequency. This is somewhat different from the radiation acoustic
field of an oscillating piston in an infinite baffle.

4. Comparison study

In order to ascertain the accuracy and reliability of the results presented in this study, a comparison is made
with existing results from the literature. Fig. 4 compares the results of the present study with Lin’s [13] results,
showing the calculated directivity pattern of the simply supported rectangular plate in the flexural vibration.

For numerical computations, the material parameters of the plate (stainless steel) are given as
r ¼ 7800 kg=m3, n ¼ 0:28 and E ¼ 195GPa. The media (air) has the physical constants of r0 ¼ 1:29 kg=m3

and C0 ¼ 340m=s. The length, width and thickness of the plate are respectively taken as a ¼ 0.24m,
b ¼ 0.16m and h ¼ 0.003m.

In Fig. 4(b), X and Y denote the spherical coordinates c and j, respectively, and Z denotes the directivity
function Dpðc;jÞ. In Fig. 4, the results are plotted for the instance when Z ¼ 100Dp. From Fig. 4, it can be
observed that the present results are in an excellent agreement with those of Lin [13].

5. Results and discussion

The sound pressure parameter obtained from the exact characteristic equation presented in Section 3 has
been expressed in dimensionless form as P̃ ¼ Pa2Zh=D. Herein, all results are presented for rectangular steel
plates when r ¼ 7800 kg=m3, n ¼ 0:28 and E ¼ 195GPa. The media (air) has the physical constants as r0 ¼
1:29 kg=m3 and C0 ¼ 340m/s.

5.1. Effect of nodal line on the directivity pattern

The results given in Figs. 5 and 6 are for different values of thickness to length ratio d and aspect ratio Z.
The dimensionless directivity pattern in these figures is illustrated for moderately thick rectangular plate with
different combinations of boundary conditions.

As shown in Fig. 5, the directivity pattern of the plate in free flexural vibration is maximum for mode shape
(m, n) ¼ (1, 1) when c ¼ 0. It is expected from Fig. 5 that the directivity patterns of the S–S–S–S square plate
are equal for j ¼ 0, p/2, p, 3p/2 and 2p. The directivity patterns of the plate in free flexural vibration for mode
shape (m, n) ¼ (2, 1) are also shown in Fig. 5. One can observe that there is a nodal line in the mode shape at
the middle line of the vibrating plate (X1 ¼ 0). It is expected that this nodal line affects the directivity pattern
of the plate. The directivity pattern of the plate is equal to zero because there are two equal positive and
negative sound radiations in both sides of the nodal line, as shown in Fig. 5. Furthermore, all values of the
Fig. 4. Comparison study of the directivity pattern parameter for an S–S–S–S rectangular plate (d ¼ 0:0125 and Z ¼ 1:5): (a) present result
(Mindlin plate theory) and (b) Lin [13] (thin plate theory).
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(m = 1, n = 1)
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�

� = 0.1, � = 0.5

� = 12.080555

� = 0.1, � = 2
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� = 0.01, � = 2
� = 78.847884

� = 0.01, � = 0.5
� = 41.915032

� = 0.01, � = 0.5

� = 49.305422
� = 0.01, � = 2
� = 196.713756

Fig. 5. Calculated three-dimensional acoustic pressure (directivity pattern) of the S–S–S–S rectangular Mindlin plates in free flexural

vibration.
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directivity pattern of the plate in free flexural vibration are also zero on every circle whose projection is on the
nodal line of the plate.

It can be easily deduced from the mode shape ðm; nÞ ¼ ð2; 2Þ that the directivity pattern of the plate in free
flexural vibration is equal to zero for j ¼ 0, p/2, p, 3p/2 and 2p. This is due to the fact that there are two
different nodal lines at X1 ¼ X2 ¼ 0. These assumptions are confirmed by the numerical results presented in
Fig. 5.

5.2. Effect of boundary conditions on the directivity pattern

In order to study the effects of boundary conditions on the directivity pattern behavior of the plate, we turn
attention to Fig. 6. It is observed from Fig. 6 that the directivity pattern in mode shape ðm; nÞ ¼ ð1; 2Þ for
moderately thick rectangular plates with S–C–S–S, S–S–S–F and S–C–S–F boundary conditions is not equal
to zero for c ¼ 0. This is due to the fact that the nodal line is moved from X2 ¼ 0 to X 2 ¼ �ð�51Þ. The
directivity pattern of the plates with S–S–S–S, S–C–S–C and S–F–S–F boundary conditions is equal to zero,
since the nodal line is set at X2 ¼ 0. Considering the influence of the free boundary conditions on the
directivity pattern and comparing three plates with the same values of both the thickness to length ratio d and
aspect ratio Z, as well as with the same boundary conditions at three edges (i.e., S–S–S–S, S–C–S–S and
S–S–S–F, as presented in Fig. 6), the plate having a free boundary condition on the fourth edge has greater
directivity pattern than the plates with clamped or simply supported boundary conditions.
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Fig. 6. Three-dimensional directivity pattern for rectangular Mindlin plates in free flexural vibration with six combinations of boundary

conditions.
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It can also be observed in Fig. 6 that the shape of the directivity pattern does not change for the plates
having an identical thickness to length ratio d, aspect ratio Z and mode shape (m, n) when different
combinations of boundary conditions are taken into account.
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5.3. Effect of thickness to length ratio on the plate parameters

The influence of the thickness to length ratio d on the plate parameters, including the sound pressure,
frequency and critical distance parameters for square plates ðZ ¼ 1Þ, with six possible combinations of
boundary conditions, is examined in Figs. 7–9. In these figures, ðm; nÞ ¼ ð1; 1Þ while the thickness to length
ratio d varies from 0.001 to 0.2.

It should be noted that Fig. 7 is plotted for r̃ ¼ 3:5 at C ¼ 0 and j ¼ p=4. From the results presented in
Fig. 7, it can be observed that as the thickness to length ratio d increases, the sound pressure parameter P̃
decreases. This is because at a higher thickness to length ratio d, the effect of shear deformation and rotary
inertia is more considerable. These effects are also more pronounced in the higher modes than those in the
lower modes. Another conclusion that can be deduced from Fig. 7 is the sound pressure parameter P̃ increases
when higher degrees of edge constraints are applied to the edges of the plate.

The behavior of the frequency parameter b in Fig. 8 is similar to that of the sound pressure parameter P̃, as
shown in Fig. 7. From Fig. 9, it can be concluded that the effect of the higher degrees of edge constraints on
the growth rate of the critical distance parameter D̃c is more tangible as the thickness to length ratio d increases
from 0.001 to 0.2.

5.4. Effect of aspect ratio on the plate parameters

The effect of the aspect ratio Z on the plate parameters, including the sound pressure, frequency and critical
distance parameters for rectangular Mindlin plates (d ¼ 0.1) with six possible combinations of boundary
conditions is graphically investigated in Figs. 10–13. In these figures, ðm; nÞ ¼ ð1; 1Þ when the aspect ratio Z has
values between 0.4 and 2.5.

The curves in Figs. 10 and 11 are depicted for r̃ ¼ 8 at C ¼ 0 and j ¼ p=4. The primary conclusion
inferred from Figs. 10 and 11 is to increase the sound pressure parameter P̃ with the enhancement of the
aspect ratio Z. It can also be observed that applying higher degrees of constraints to the edges of the plate leads
to the increase of the sound pressure parameter P̃ for any values of the aspect ratio Z. It is worthwhile to
mention that the sound pressure parameter P̃ for the S–F–S–F rectangular Mindlin plate approaches a
constant value as the aspect ratio Z value rises. Furthermore, for some ranges of the aspect ratio Z, the
sound pressure parameter P̃ increases for the S–F–S–F rectangular Mindlin plate when compared with the
S–C–S–F one.
Fig. 7. Variation of sound pressure parameter P̃ versus d for square Mindlin plates with six combinations of boundary conditions when

ðm; nÞ ¼ ð1; 1Þ at c ¼ 0; j ¼ p=4 and r̃ ¼ 3:5.
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Fig. 9. Variation of critical distance parameter D̃c versus d for square Mindlin plates with six combinations of boundary conditions when

ðm; nÞ ¼ ð1; 1Þ.

Fig. 8. Variation of frequency parameter b versus d for square Mindlin plates with six combinations of boundary conditions when

ðm; nÞ ¼ ð1; 1Þ.
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The trend of variation of the plate parameters versus Z in both Figs. 12 and 13 is similar to that in Fig. 11 as
well as to each other. From Figs. 12 and 13, it can be deduced that the influence of the higher degrees of edge
constraints on the growth rate of the frequency parameter b and the critical distance parameter D̃c is more
considerable with the increase of the aspect ratio Z from 0.4 to 2.5.

5.5. Effect of boundary conditions on the sound pressure parameter ðP̃=A1r̃Þ

In order to study the effect of the six combinations of boundary conditions for square Mindlin plates (Z ¼ 1)
on the sound pressure parameter ðP̃=A1r̃Þ, Fig. 14 plots a wide range of the thickness to length ratio d while
ðm; nÞ ¼ ð1; 1Þ, C ¼ 0 and j ¼ p=4. From the results presented in Fig. 14, it is found that regardless of the
boundary conditions, the sound pressure parameter ðP̃=A1r̃Þ diminishes with an increase of the thickness to
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Fig. 10. Variation of sound pressure parameter P̃ versus Z for S–S–S–S, S–C–S–S and S–C–S–C rectangular Mindlin plates (d ¼ 0.1) when

ðm; nÞ ¼ ð1; 1Þ at c ¼ 0; j ¼ p=4 and r̃ ¼ 8.

Fig. 11. Variation of sound pressure parameter P̃ versus Z for S–S–S–F, S–F–S–F and S–C–S–F rectangular Mindlin plates (d ¼ 0.1) when

ðm; nÞ ¼ ð1; 1Þ at c ¼ 0; j ¼ p=4 and r̃ ¼ 8.
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length ratio d from 0.001 to 0.2. It is worthy noting that for the higher degrees of edge constraints considered
for the square plate, the sound pressure parameter ðP̃=A1r̃Þ decreases in most ranges of the thickness to length
ratio d. In some boundary conditions, an inverse behaviour is experienced at the switching point (dp0.7) for
cases with no free constraints at the edges of the plate. Among all the six boundary conditions considered in
Fig. 14, it can be seen that the lowest and highest values of P̃=A1r̃ correspond to the S–C–S–C and S–F–S–F
cases, respectively. Thus, constraints at the edges increase the flexural rigidity of the plate, resulting in lower
sound pressure parameters.

6. Conclusions

In this work, the Mindlin plate theory was used to investigate the acoustic radiation behavior of moderately
thick rectangular plates. The exact closed-form sound pressure equations were derived for the six cases having
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Fig. 12. Variation of frequency parameter b versus Z for rectangular Mindlin plates (d ¼ 0.1) with six combinations of boundary

conditions when ðm; nÞ ¼ ð1; 1Þ.

Fig. 13. Variations of critical distance parameter D̃c versus Z for rectangular Mindlin plates (d ¼ 0.1) with six combinations of boundary

conditions when ðm; nÞ ¼ ð1; 1Þ.
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two opposite sides simply supported. The six cases considered in the present study include S–S–S–S, S–C–S–S,
S–C–S–C, S–S–S–F, S–F–S–F and S–C–S–F rectangular plates. The transverse deflection and displace-
ments along the X1- and X2-axes were also given as a closed form for all six cases. To ensure the accuracy
of the derived formulations, the results obtained by the present exact analytical solutions have been
compared with their counterparts in the literature. The directivity patterns and their associated contour
plots at any mode sequence of the plate in free flexural vibration were graphically displayed. Extensive and
accurate results of the plate parameters, including the sound pressure, frequency and critical distance
parameters for a square plate with six combinations of boundary conditions were presented for a wide
range of aspect ratios and thickness to length ratios. Finally, the graph of the sound pressure parameter
ðP̃=A1r̃Þ versus the thickness to length ratio was illustrated for six combinations of boundary conditions.
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Fig. 14. Variation of sound pressure parameter P̃=A1 r̃ versus d for square Mindlin plates with six combinations of boundary conditions

when ðm; nÞ ¼ ð1; 1Þ at c ¼ 0; j ¼ p=4.
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The main advantages of the exact analytical solutions presented in this paper can be summarized as
follows:
�
 The proposed closed-form acoustic radiation equations are capable of predicting highly accurate sound
pressure within the framework of Mindlin plate theory. This is because exact analytical solutions are used
to derive and solve the governing differential equations of motion.

�
 All of the results obtained by the exact analytical solutions provide researchers and designers with a reliable

source to validate the numerical results of their own problems.

Appendix A

The governing differential equations based on the Mindlin first-order shear deformation plate theory in the
absence of in-plane stress resultants are given by Ref. [17]

n1ðw̃1;11 þ Z2w̃1;22Þ þ n2ðw̃1;11 þ Zw̃2;12Þ �
12k2n1
d2
ðw̃1 � w̃3;1Þ ¼ �

d2

12
b2w̃1, (A.1)

n1ðw̃2;11 þ Z2w̃2;22Þ þ n2ðw̃1;12 þ Zw̃2;22Þ �
12k2n1
d2
ðw̃2 � w̃3;2Þ ¼ �

d2

12
bw̃2, (A.2)

12k2n1
d2
ðw̃3;11 þ Z2w̃3;22 � ðw̃1;1 þ Zw̃2;2ÞÞ ¼ �b

2w̃3, (A.3)

where n1 ¼ ð1� nÞ=2, n2 ¼ ð1þ nÞ=2, w̃1 and w̃2 are the rotations of the transverses normal about the X1- and
X2-axis, respectively, and the symbol ‘‘,’’ is used to indicate the partial derivative. For example, w̃3;11 is
equivalent to q2w̃3=qx2

1 while w̃3;1 means qw̃3=qx1.
In order to find the displacement, the X1- and X2-axes are denoted by U1 ¼ �X 3w̃1 and U2 ¼ �X 3w̃2,

respectively, and transverse deflection along the X3-axis is denoted by Ũ 3 ¼ w̃3. Eqs. (A.1)–(A.3) may be solved
by introducing the three dimensionless potentials functions W1, W2 and W3 as follow [17]:

w̃1 ¼ C1W 1;1 þ C2W 2;1 � ZW 3;2, (A.4)

w̃2 ¼ C1ZW 1;2 þ C2ZW 2;2 þW 3;1, (A.5)

w̃3 ¼W 1 þW 2. (A.6)
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Based on these dimensionless potentials, the governing equations of motion may now be expressed as

W 1;11 þ Z2W 1;22 ¼ �a21W 1, (A.7)

W 2;11 þ Z2W 2;22 ¼ �a22W 2, (A.8)

W 3;11 þ Z2W 3;22 ¼ �a23W 3. (A.9)

In Ref. [17], the problem is also solved by the method of separation of variables. Thus, the set of suitable
solutions satisfying the boundary conditions, when two opposite edges at X 1 ¼ �0:5 and X 1 ¼ 0:5 are simply
supported, may be selected as

W 1 ¼ ½A1 sinðl1ðX 2 þ 0:5ÞÞ þ A2 cosðl1ðX 2 þ 0:5ÞÞ� sinðmðX 1 þ 0:5ÞÞ, (A.10)

W 2 ¼ ½A3 sinhðl2ðX 2 þ 0:5ÞÞ þ A4 coshðl2ðX 2 þ 0:5ÞÞ� sinðmðX 1 þ 0:5ÞÞ, (A.11)

W 3 ¼ ½A5 sinhðl3ðX 2 þ 0:5ÞÞ þ A6 coshðl3ðX 2 þ 0:5ÞÞ� cosðmðX 1 þ 0:5ÞÞ. (A.12)

Introducing the three dimensionless potentials functions Eqs. (A.10)–(A.12) in Eqs. (A.4)–(A.6), the three
dimensionless functions w̃1, w̃2 and w̃3 are given by

w̃1 ¼ ½A1C1m sinðl1ðX 2 þ 0:5ÞÞ þ A2C1m cosðl1ðX 2 þ 0:5ÞÞ þ A3C2m sinhðl2ðX 2 þ 0:5ÞÞ

þ A4C2m coshðl1ðX 2 þ 0:5ÞÞ � A5Zl3 coshðl2ðX 2 þ 0:5ÞÞ

� A6Zl3 sinhðl1ðX 2 þ 0:5ÞÞ� cosðmðX 1 þ 0:5ÞÞ, (A.13)

w̃2 ¼ ½A1C1Zl1 cosðl1ðX 2 þ 0:5ÞÞ � A2C1Zl1 sinðl1ðX 2 þ 0:5ÞÞ

þ A3C2Zl2 coshðl2ðX 2 þ 0:5ÞÞ þ A4C2Zl2 sinhðl1ðX 2 þ 0:5ÞÞ

� A5m sinhðl3ðX 2 þ 0:5ÞÞ þ A6m coshðl3ðX 2 þ 0:5ÞÞ� sinðmðX 1 þ 0:5ÞÞ, (A.14)

w̃3 ¼ A1 sinðl1ðX 2 þ 0:5ÞÞ þ A2 cosðl1ðX 2 þ 0:5ÞÞ þ A3 sinhðl2ðX 2 þ 0:5ÞÞ½

þ A4 coshðl2ðX 2 þ 0:5ÞÞ� sinðmðX 1 þ 0:5ÞÞ. (A.15)

The remaining six unknown’s arbitrary constants Ai are evaluated by means of the two boundary conditions
at X 2 ¼ �0:5 and X 2 ¼ 0:5 and can be simply supported, clamped or free, as show in Fig. 1. Focusing on the
arbitrary constants Ai (i ¼ 1,2,y,6) and presenting them in terms of A1, leads to the expressions of the
dimensionless displacements for the six combinations of boundary conditions.

Case 1. S–S–S–S:

A2 ¼ A3 ¼ A4 ¼ A5 ¼ A6 ¼ 0, (A.16)

l1 ¼ np. (A.17)

Case 2. S–C–S–S:

A2 ¼ A4 ¼ A5 ¼ 0, (A.18)

A3 ¼ �ðsinðl1Þ= sinhðl2ÞÞA1, (A.19)

A6 ¼ ððC1 � C2Þm sinðl1Þ=ðZl3 sinhðl3ÞÞÞA1. (A.20)

Case 3. S–C–S–C:

A2 ¼ b1A1, (A.21)

A3 ¼ �ððb1 cosðl1Þ � b1 coshðl2Þ þ sinðl1ÞÞ= sinhðl2ÞÞA1, (A.22)

A4 ¼ �b1A1, (A.23)

A5 ¼ ðmb1ðC1 � C2Þ=ðZl3ÞÞA1, (A.24)
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A6 ¼ ððC1Zl1 sinhðl2Þ � C2Zl2ðb1 cosðl1Þ � b1 coshðl2Þ þ sinðl1ÞÞÞ=ðm sinhðl2ÞÞÞA1. (A.25)

Case 4. S–S–S–F:

A2 ¼ b2A1, (A.26)

A3 ¼ �ðL1l1=ðL3l2ÞÞA1, (A.27)

A4 ¼ ððL1l1 sinhðl2Þ=ðL3l2Þ � b2 cosðl1Þ � sinðl1ÞÞ= coshðl2ÞÞA1, (A.28)

A5 ¼ ðC2ðm2n� Z2l22ÞðL1l1 sinhðl2Þ=ðL3l2Þ � b2 cosðl1Þ � sin ðl1ÞÞ= coshðl2Þ

þ b2C1ðm2nþ Z2l21Þ=ðmZl3ðn� 1ÞÞA1, (A.29)

A6 ¼ 2mZl1ðC1 � C2L1=L3Þ=ðm2 þ Z2l23ÞA1. (A.30)

Case 5. S–F–S–F:

A2 ¼ b3A1, (A.31)

A3 ¼ �ðL1l1=ðL3l2ÞÞA1, (A.32)

A4 ¼ b4A1, (A.33)

A5 ¼ ðC1b3ðm2nþ Z2l21Þ þ b4C2ðm2n� Z2l22ÞÞ=ðmZl3ðn� 1ÞÞA1, (A.34)

A6 ¼
Zl1
m
ðC1 � 1� ðC2 � 1ÞL1=L3ÞA1. (A.35)

Case 6. S–C–S–F:

A2 ¼ b5A1, (A.36)

A3 ¼ �ðL1l1=ðL3l2ÞÞA1, (A.37)

A4 ¼ ððL1l1 sinhðl2Þ=ðL3l2Þ � b5 cosðl1Þ � sinðl1ÞÞ= coshðl2ÞÞA1, (A.38)

A5 ¼ C2ðm2n� Z2l22ÞðL1l1 sinhðl2Þ=ðL3l2Þ � b5 cosðl1Þ � sinðl1ÞÞ= coshðl2Þ


þ b5C1ðm2nþ Z2l21ÞÞ=ðmZl3ðn� 1ÞÞA1, (A.39)

A6 ¼
Zl1
m
ðC1 � 1� ðC2 � 1ÞL1=L3ÞA1. (A.40)

Using the Eqs. (A.1)–(A.3), it is easy to show the orthogonality relation as

A1 ¼ 1

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 0:5

�0:5

Z 0:5

�0:5

d2

12
ðc̄

2

1 þ c̄
2

2Þ þ c̄
2

3

� �
dX 1 dX 2

s
, (A.41)

where

w̃1 ¼ A1c̄1, (A.42)

w̃2 ¼ A1c̄2, (A.43)

w̃3 ¼ A1c̄3. (A.44)
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